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Study of the stability of plane parallel flows of a viscous incompressible fluid with the aid of the Orr-Sommerfeld
equation has found increasing application recently, both to construct the neutral curves and find the critical Reynolds
numbers [1] and also for the first attempts to predict theoretically the turbulent mean velocity profiles [2].

The problem reduces mathematically to finding the eigenvalues for the equation
o1V — 229" + olp = iaR [(u — o) (9" —o?g) — u"'p] (1)

with homogeneous boundary conditions for the function ¢. Here u = u(y) is the velocity profile of the flow being analyzed
for stability; ¢ = @(y) is the complex amplitude of the disturbed motion stream function, having the form

@(y) exp [ie(x — ct)]; o is the wavenumber; R is the Reynolds number; c is the unknown eigenvalue. For Im ¢ > 0 there
is exponential growth of the disturbances (instability); for Imc < 0 there is decay.

To date all the numerical methods have made it possible to calculate the eigenvalues of (1) only for comparatively
small values of @R—no more than 10%~10°,

In [3] a technique for calculating the eigenvalues was proposed which makes it possible to practically remove
the limitations on the magnitude of @R and obtain the eigenvalues with a specified precision.

The objective of the present study is to: 1) show the effectiveness of the method of [3] using the example of the
study of Poiseuille flow stability in a plane channel, where there is extensive possibility for comparison with the
results of other authors; 2) compare the results of the numerical and asymptotic methods over a wide range of values
of @R; 3) fill in the gap in the study of plane Poiseuille flow stability—find the dependence of the eigenvalue on the
wavenumber «. This last analysis, which is of independent interest as well, may be used to study the nonlinear
stability of Poiseuille flow.

The algorithm of [3], somewhat modified, was used to calculate the eigenvalues. The integration of the system
of equations was made using the Runge-Kutta method with automatic selection of the step and fixed relative
precision. The results relating to the neutral curve were obtained to five significant places, and the other results
have at least three significant places.

All the results hereafter are represented in dimensionless parameters, based on the average (discharge)
velocity, channel half-width, and molecular viscosity. The eigenvalue is written in the form ¢ = X + iY.

Figure 1 shows the "nose" of the neutral curve, computed by the authors (curve 4) for comparison with other
results obtained by both asymptotic (curve 1 [4], 2 [1], 3 [5]) and numerical methods (crosses are data of [6],
squares are data of [7]).
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We see in Fig. 1 that the numerical calculations yield somewhat different results in comparison with the
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calculations using different asymptotic approximations.

On the other hand, all the numerical results found in the literature agree with the results of the present authors
to within the graph precision. For example, for the critical point of the neutral curve

R« oy X Y
[ 3848.08  1.02071  0.39603  0.00000
Authors 3848.15  1.02041 0.39598 —0.6.107%

Figure 2 shows the neutral curve (curve 2) calculated by the authors up to R = 2.5. 10%, The purpose of these
calculations was primarily to demonstrate the effectiveness of the method. The computations were made on a BESM-6
computer. The neutral points were found by the secant method, Three to five eigenvalues were calculated to find a
single neutral point. The computing time for a single eigenvalue in the nose region did not exceed a second.
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The numerical calculations agreed exactly with the results of asymptotic theory. The neutral curve in a broad
range of Reynolds numbers, obtained by the asymptotic methods, is presented in the survey paper [8]. The dash-dot
lines in Fig, 2 show the Lin asymptotes for the upper and lower branches of the neutral curve from the data of [8]:
branch 3 — « = (400/R)1/“, branch 4 — o = (142/R)1/7. Both the asymptotic and the numerical results indicate a
"step" in the upper branch at R = 0.7086 - 108, There is a similar step in the curve for the phase velocity X (curve 5).
This is explained in the asymptotic theory by the loop in the Tietjens function [8]. The dashed line in Fig. 2 (curve 1)
shows the relation a(R) along the ridge maxaY(R), which can be approximated for R > 100 by the relation
Q= (10/3)R‘1/7 to within a percent. The ridge has an apex (shown by the cross in Fig. 2), with the parameters
R=174:10%, o =0.678, X = 0.1897, Y = 0.01577, after which Y decreases approximately according to the law
Y = 1/n(aR)~1/4,

We note thatthis picture differs considerably from [1], where contours are presented for Y > 0 obtained on the
basis of the asymptotic theory. With reduction of R along curve 1 in Fig. 2, o approaches 2.81, which corresponds to
its value for a stationary fluid.

We have been forced to avoid a tabular representation of the results because of the large volume of data and
poor visibility of the tabular form. The following are only the values for the end points of the neutral curve:

R o X Y
Upper branch  0.250.10° 0.310  0.037¢1  --0.227.107¢
Lower branch . 0.290-107 0.254  0.0538 —0.172-10‘4
Lin's asymptotic theory yields values which do not differ graphically from our numerical results for R = 10°,
It is of interest to find the dependence of the eigenvalue on the wave number «. To study this dependence over the

entire range of wave numbers from zero to infinity, we must combine the numerical calculations with the asymptotic
description for very small and very large values of «.

The following asymptotic relations (Fig. 3) are valid for an arbitrary profile u(y) & ¢, for the first eigenvalue:

Y= —n?/aR (small, curve 6) (2)
Y=—a/R (large o, curves 7) (3)

Here the limiting values of the phase velocity X will depend on the form of the profile; for example, for the
Poiseuille parabola X = 0.62.

In Fig. 3 the solid curves are the numerical results for the dependence of X and Y on o for R = 102, 103, and
10* (curves 1, 2, and 3, respectively).
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In the general case, for fixed R, Y(«) has two local maxima. One of them is reached for o of order unity and,
beginning with R = 3848, rises above the zero level, forms the neutral curve, and corresponds to instability (curve 4).
Another local maximum exists for R = 164, is located considerably lower, and is reached for « on the order of tens
and hundreds (curve 5). The relation X = 1.13, aRY = —12.96 holds for curve 4 for small «. For large o the following
relations hold quite well along curves 4 and 5:

e = 1.5 @R) ™+ int (@R) 4
¢ == (aR)™"s (2n — i 3.86) (5)

We note that as Y(a) approaches the asymptotic relation (3) the phase velocities are described well by the
relation

X = wh Ry (6)
(Formulas (4)—(6) were obtained empirically on the basis of the numerical experiments.)
Thus, in the R range studied the eigenvalues (1) for the Poiseuille parabola will be defined.
In conclusion the authors wish to thank M. A. Gol'dshtik for his interest in the study and valuable advice.
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